Very long baseline interferometry results in an effective antenna of many kilometres in size |
Australian astronomers used "very long baseline interferometry" to examine Gliese 581, a star known to host planets in its "habitable zone".
Their report, posted online, will be published in the Astronomical Journal.
Astronomers currently estimate that every star in the night sky hosts, on average, 1.6 planets - implying that there are billions of planets out there yet to be confirmed.
But a number of stars have already been identified as playing host to rocky planets at a distance not too hot and not too cold for liquid water - the first proxy for amenability to life.
ET or AT&T?
Gliese 581, a red dwarf star about 20 light-years away, is a particularly interesting candidate for the Search for Extraterrestrial Intelligence, or Seti.
It has six planets, two of which are "super-Earths" likely to be in this habitable zone.
So astronomers at Curtin University's International Centre for Radio Astronomy Research in Australia, put one of radio astronomy's highest-resolution techniques to work, listening in to the star system.
Very long baseline interferometry (VLBI) is the process of using several or many telescopes that are distant from one another, carefully combining their signals to make them effectively act as one large telescope, peering intently at a tiny portion of the sky.
The team trained the Australian Long Baseline Array onto Gliese 581 for eight hours, listening in on a range of radio frequencies. The result was radio silence.
Seth Shostak, principal astronomer at the Seti Institute in the US, said that the approach's strength lies in the fraction of the sky it examines.
"It's like they're looking at the sky through a 6-foot-long cocktail straw - a tiny bit of the sky, so they're only sensitive to signals that are coming from right around that star system," he told BBC News.
That is useful not only for getting a high-resolution view, but for excluding the signals from Earthly technologies that plague Seti efforts.
"Figuring out 'is this ET or AT&T?' isn't always easy, and VLBI gives you a good way of discriminating, because if you find something from that tiny, tiny dot on the sky you can say that's not one of our satellites," Dr Shostak said.
He added that the team's negative result was not disheartening, because the odds have it that the hunt for aliens, if it is ever to find them, will require thousands or millions of observations of this kind. (BBC.co.uk)
0 comments:
Post a Comment
Grace A Comment!